Time-dependent Stochastic Shortest Path(s) Algorithms for a Scheduled Transportation Network
نویسندگان
چکیده
Following on from our work concerning travellers’ preferences in public transportation networks (Wu and Hartley, 2004), we introduce the concept of stochasticity to our algorithms. Stochasticity greatly increases the complexity of the route finding problem, so greater algorithmic efficiency becomes imperative. Public transportation networks (buses, trains) have two important features: edges can only be traversed at certain points in time and the weights of these edges change in a day and have an uncertainty associated with them. These features determine that a public transportation network is a stochastic and time-dependent network. Finding multiple shortest paths in a both stochastic and time-dependent network is currently regarded as the most difficult task in the route finding problems (Loui, 1983). This paper discusses the use of k-shortest-paths (KSP) algorithms to find optimal route(s) through a network in which the edge weights are defined by probability distributions. A comprehensive review of shortest path(s) algorithms with probabilistic graphs was conducted.
منابع مشابه
Optimum Routing in the Urban Transportation Network by Integrating Genetic Meta-heuristic (GA) and Tabu Search (Ts) Algorithms
Urban transportation is one of the most important issues of urban life especially in big cities. Urban development, and subsequently the increase of routes and communications, make the role of transportation science more pronounced. The shortest path problem in a network is one of the most basic network analysis issues. In fact, finding answers to this question is necessity for higher level ana...
متن کاملThe Lagrangian Relaxation Method for the Shortest Path Problem Considering Transportation Plans and Budgetary Constraint
In this paper, a constrained shortest path problem (CSP) in a network is investigated, in which some special plans for each link with corresponding pre-determined costs as well as reduction values in the link travel time are considered. The purpose is to find a path and selecting the best plans on its links, to improve the travel time as most as possible, while the costs of conducting plans do ...
متن کاملSOLVING BEST PATH PROBLEM ON MULTIMODAL TRANSPORTATION NETWORKS WITH FUZZY COSTS
Numerous algorithms have been proposed to solve the shortest-pathproblem; many of them consider a single-mode network and crispcosts. Other attempts have addressed the problem of fuzzy costs ina single-mode network, the so-called fuzzy shortest-path problem(FSPP). The main contribution of the present work is to solve theoptimum path problem in a multimodal transportation network, inwhich the co...
متن کاملDynamic Multi Period Production Planning Problem with Semi Markovian Variable Cost (TECHNICAL NOTE)
This paper develops a method for solving the single product multi-period production-planning problem, in which the production and the inventory costs of each period arc concave and backlogging is not permitted. It is also assumed that the unit variable cost of the production evolves according to a continuous time Markov process. We prove that this production-planning problem can be Stated as a ...
متن کاملApproximation Solutions for Time-Varying Shortest Path Problem
Abstract. Time-varying network optimization problems have tradition-ally been solved by specialized algorithms. These algorithms have NP-complement time complexity. This paper considers the time-varying short-est path problem, in which can be optimally solved in O(T(m + n)) time,where T is a given integer. For this problem with arbitrary waiting times,we propose an approximation algorithm, whic...
متن کامل